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(a) Task: promptable segmentation (b) Model: Segment Anything Model (SAM) (c) Data: data engine (top) & dataset (bottom)

Figure 1: We aim to build a foundation model for segmentation by introducing three interconnected components: a prompt-
able segmentation fask, a segmentation model (SAM) that powers data annotation and enables zero-shot transfer to a range
of tasks via prompt engineering, and a data engine for collecting SA-1B, our dataset of over 1 billion masks.
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Contributions

1. A promptable segmentation TASK

2. AMODEL that supports flexible prompting and can output

segmentation masks in real-time when prompted to allow for interactive
use

3. A diverse, large-scale source of DATA
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Original vs Promptable Segmentation Task
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* Inspired by large language models pretrained on web-scale datasets, which
can generalize to unseen data (Zero-shot / Few-shot)
* This capability is implemented with prompt engineering
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New Model for Prompt Segmentation
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(b) Model: Segment Anything Model (SAM)
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Data Engine + Dataset (SA-1B
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(c) Data: data engine (top) & dataset (bottom)

Figure 2: Example images with overlaid masks from our newly introduced dataset, SA-1B. SA-1B contains 11M diverse,
high-resolution, licensed, and privacy protecting images and 1.1B high-quality segmentation masks. These masks were
annotated fully automatically by SAM, and as we verify by human ratings and numerous experiments, are of high quality and
diversity. We group images by number of masks per image for visualization (there are ~100 masks per image on average).
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Promptable Segmentation Task

L
Med

Prompt: . Advéntage:

1. Foreground / Background Points 1. Zero-shot transfer
2. Rough box or masks 2. Generalization

3. Free-form Text
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Segment Anything Model
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Figure 4: Segment Anything Model (SAM) overview. A heavyweight image encoder outputs an image embedding that can
then be efficiently queried by a variety of input prompts to produce object masks at amortized real-time speed. For ambiguous
prompts corresponding to more than one object, SAM can output multiple valid masks and associated confidence scores.

* Model Structure: * Prompt Encoder:

1. Image Encoder: MAE pre-trained ViT 1. Point and boxes: Positional Encoding
2. Prompt Encoder 2. Text: Text Encoder in CLIP

3. Mask Decoder: Transformer Decoder block 3. Mask: Convolutions

followed by a dynamic mask prediction head
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Segment Anything Model
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* Ambiguity:

Predict 3 mask outputs for nested
mask

(whole, part, and subpart)

* Efficiency:
Precompute image embedding
Pe+md run on CPU in ~50ms

* Loss:
Supervise Focal Loss + Dice Loss
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Figure 3: Each column shows 3 valid masks generated by
SAM from a single ambiguous point prompt (green circle).
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Data Engine
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(c) Data: data engine (top) & dataset (bottom)

* Assisted-manual stage:
Training -> give new annotations -> retraining ->
give new annotations -> retraining -> -+ (6 times)

Semi-automatic stage:
Detect confident masks -> Add mask for
unannotated objects -> retraining -> -+ (5 times)

* Fully automatic stage:
Cropping + Filtering + Postprocessing
Generating best mask for SA-1B

11M images with 1.1B masks
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SA-1B Dataset
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Figure 5: Image-size normalized mask center distributions.
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Figure 6: Dataset mask properties. The legend references the number of images and masks in each dataset. Note, that SA-1B
has 11 x more images and 400x more masks than the largest existing segmentation dataset Open Images [60].
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Figure 2: Example images with overlaid masks from our newly introduced dataset, SA-1B. SA-1B contains 11M diverse, 2 e~ E 2E oa® a % ES = E & 5 g Z §‘ E s o<~ Um g S << g é oT @ E A § S g g % § N % § =2
high-resolution, licensed, and privacy protecting images and 1.1B high-quality segmentation masks. These masks were = 50 most common countries (ISO codes)

annotated fully automatically by SAM, and as we verify by human ratings and numerous experiments, are of high quality and

diversity. We group images by number of masks per image for visualization (there are ~100 masks per image on average). Figure 7: Estimated geographic distribution of SA-1B images. Most of the world’s countries have more than 1000 images in
SA-1B, and the three countries with the most images are from different parts of the world.
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. ’A\TICd

Limitations

Can miss fine structures, small components

Interactive seg can outperform when many
points are provided

. Text-to-mask is exploratory and not entirely
robust

Unclear to define prompt in semantic and
panoptic segmentation (IEXFME=70E)

Conclusions

. Attempt to lift image segmentation into to the era

of foundation models.

Contributions: a new task (promptable

segmentation), model (SAM), and dataset (SA-

1B) that make this leap possible.

. Whether SAM achieves the status of a foundation

model remains to be seen by how it is used in the
community, but regardless we expect the
perspective of this work, the release of over 1B
masks, and our promptable segmentation model
will help pave the path ahead
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