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Abstract

Deformable retinal image registration is crucial in clinical diagnosis and
longitudinal studies of retinal diseases. Most existing deep deformable
retinal image registration methods focus on fully convolutional network
(FCN) architecture design, which fail to model long-range dependen-
cies among pixels—a significant factor in deformable retinal image
registration. Transformers based on the self-attention mechanism, can
capture global context dependencies, complementing local convolution.
However, multi-scale spatial feature fusion and pixel-wise position selec-
tion are also crucial for the deformable retinal image registration, are
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often ignored by both FCNs and transformers. To fully leverage the
merits of FCNs, multi-scale spatial attention, and transformers, we pro-
pose a hierarchical hybrid architecture, Reparameterized Multi-scale
Transformer (RMFormer), for deformable retinal image registration. In
RMFormer, we specifically develop a reparameterized multi-scale spa-
tial attention to adaptively fuse multi-scale spatial features, with the
assistance of the re-parameterizing technique, thereby highlighting infor-
mative pixel-wise positions in a lightweight manner. Experimental results
on two publicly available datasets demonstrate the superiority of our
RMFormer over state-of-the-art methods and show it is data-efficient
in a limited medical image regime. Additionally, we are the first to
provide a visualization analysis to explain how our proposed method
affects the deformable retinal image registration process. The source
code of our work is available at https://github.com/Tloops/RMFormer.

Keywords: deformable registration, retinal, Reparameterized Multi-scale
Transformer, re-parameterization, attention

1 Introduction

Retinal image registration is a fundamental task in ophthalmic image analysis
[1]. Its goal is to find the correspondences between ophthalmic images taken
from different viewpoints, time and even modalities by aligning their informa-
tion, which is beneficial to clinical diagnosis [2] and longitudinal studies [3]
of retinal diseases, including age-related macular degeneration (AMD), dia-
betic retinopathy (DR), and glaucoma. Deformable retinal image registration
is one of the most common retinal image registration tasks, aiming to achieve
accurate mapping and alignment of specific structures in the retina [4] via
image alignment. Fig. 1 provides a representative example of deformable reti-
nal image registration based on fundus images, which can help the audience
easily understand this task. Clinically, clinicians usually perform deformable
retinal image registration, heavily relying on their professional knowledge and
clinical training to find the corresponding blood vessels or lesions. Unfortu-
nately, this mode is time-consuming and error-prone. Therefore, developing
computer-aid registration techniques is necessary and significant to provide
efficient and accurate deformable retinal image registration.

In the past years, deep learning techniques have dominated computer vision
and medical image analysis fields [5–9]. Most of existing deep deformable image
registration methods are based on fully convolutional networks (FCNs) and
their variants [10–13], which can provide pixel-level predictions. However, these
FCN-based methods have two common shortcomings: (1) Small convolution
kernels (e.g., 3 × 3) restrict their receptive fields to a local region, inevitably
losing sight of long-range dependencies among pixel-wise features, which are
crucial for deformable image registration due to significant variations in lesion
shape and size. (2) Most previous works use a single convolution kernel size to

https://github.com/Tloops/RMFormer
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Fig. 1 Deformable retinal image registration warps the moving image via the predicted
deformation field to align the moving image to the fixed image. Each pixel of the deformation
field represents the spatial displacement of that particular pixel in the moving image with
respect to its corresponding location in the fixed image.

learn single-scale features in every convolutional layer, which cannot capture
multi-scale features.

Recently, Transformers based on the self-attention mechanism have
achieved competitive performance through comparisons to FCN-based coun-
terparts in various learning tasks [14, 15]. In the context of its long-range
dependency modeling mechanism and adaptive feature encoding ability, Trans-
formers also have been applied to tackle medical image registration task.
Chen et al. [16] pioneered the use of Transformer blocks on high-level features
extracted from convolutional layers of moving and fixed images. Subsequently,
TransMorph [17] used Swin Transformer [18] as the encoder and convolu-
tional layers as the decoder, respectively. Pure Transformer architectures such
as XMorpher [19] and Swin-VoxelMorph [20] have also been developed to
address medical image registration tasks. Although long-range feature inter-
action can be learned well with Transformers, they still have the following
limitations: (1) The Transformer-based methods have low inductive bias as
demonstrated in [21], thereby they commonly require more data to achieve
convergence during training. The additional position embedding may mitigate
this issue, but its inherent nature restricts its ability to capture positional
information accurately. (2) Transformers use fixed patch sizes and only inter-
act between the embedded tokens, which limits multi-scale spatial feature
learning. Consequently, the potential for designing hybrid CNN-Transformer
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architectures remains a compelling area for further exploration in deformable
image registration.

According to our systematical analysis, we have gained the following sights:
(1) FCN-based methods excel in capturing local features and have strong
inductive bias [22]. (2) Transformers demonstrate its superiority in long-range
dependency modeling. Motivated by the complementary roles of CNNs and
Transformers, it is natural to design a hybrid network with medical image
registration in mind. Previous studies [16, 23, 24] have combined CNNs with
Transformers by simply adding Transformer blocks to higher-level layers of
the network, but they primarily serve as feature enhancers without effectively
exploring their merits. Additionally, they overlook the relative importance of
multi-scale spatial features, which is crucial for medical image registration.
Spatial attention mechanisms have been proven effective in various vision tasks
because they are capable of dynamically weighing spatial features for highlight-
ing informative pixel-wise positions [25]. The utilization of multi-scale spatial
features in spatial attention blocks can improve the network’s robustness and
feature representation learning ability, which has been less studied before.
Moreover, previous works have not exploited the hybrid architecture of FCNs
and Transformers with multi-scale spatial attention blocks for deformable
retinal image registration in limited ophthalmic image regimes. A question
naturally arises: how to fully leverage the advantages of FCNs, Transformers,
and multi-scale spatial attention for deep deformable retinal image registration
network design in a computation-efficient manner?

To tackle this question, we rethink the deformable retinal image registration
network design and develop a novel hybrid registration network architecture,
Reparameterized Multi-scale Transformer (RMFormer), for deformable reti-
nal image registration based on fundus images, which is an encoder-decoder
structure, as shown in Fig. 2. In the RMFormer, we propose a novel hybrid
re-parameterized transformer (HRT) module, as shown in Fig. 2(d), by inte-
grating the merits of inductive bias of FCN, long-range dependency modeling
of transformer block, multi-scale spatial feature exploitation in multi-scale spa-
tial attention, as shown in Fig. 2. HRT is comprised of a multi-scale convolution
block (MSCB) for learning local features and highlighting significant pixel-wise
positions and a Swin Transformer block (STB), for capturing global context
dependencies. In particular, we design a reparameterized multi-scale spatial
attention block (R-MSSA) in the MSCB block, which dynamically fuses multi-
scale spatial features to emphasize informative pixel-wise positions. To reduce
the computational cost and parameters of the R-MSSA block at the inference
time, we apply the re-parameterization technique [26, 27] to merge multi-scale
kernels within R-MSSA into a singular kernel by transferring the parameters.
We conduct extensive experiments on two 2D/3D deformable medical image
registration tasks to verify the effectiveness of our proposed RMFormer. The
main contributions of this paper are summarized as follows:

1. We proposed a novel hybrid deformable medical image registration net-
work architecture, RMFormer, aiming to fully leverage the advantages of



Springer Nature 2021 LATEX template

RMFormer for Deformable Retinal Image Registration 5

local features of FCNs, global features of Transformers, and multi-scale spa-
tial attention features simultaneously, enhancing the robustness and feature
representation learning ability of our RMFormer.

2. We propose a reparameterized multi-scale spatial attention (R-MSSA) block
to dynamically fuse multi-scale spatial features for highlighting significant
pixel-wise positions, in which we employ a re-parameterization technique
to reduce the complexity of R-MSSA at the inference stage.

3. The extensive experiments on a publicly available retinal image dataset and
a 3D MRI dataset demonstrate the effectiveness of our proposed methods.
Moreover, we are the first to provide a visual analysis of the intermediate
feature maps to explain the inherent behaviors of our proposed method.

The rest of this paper is structured as follows: Section 2 presents a com-
prehensive review of the literature related to our work. Section 3 provides
a detailed exposition of our proposed method. In Section 4, we present the
results of our experimental evaluation, providing both a quantitative analysis
of performance metrics and a qualitative appraisal of visual outputs. Finally,
Section 6 concludes the key contributions of this work.

2 Related Work

2.1 FCN-based Deformable Registration Methods

Over the years, significant advancements have been made in deformable med-
ical image registration, with many methods leveraging FCNs. Fan et al. [28]
employed a hierarchical dual-supervised FCN to achieve brain MR registration.
Balakrishnan et al. [11] introduced VoxelMorph, a deep learning framework
for deformable medical image registration, utilizing an unsupervised learn-
ing strategy. Hu et al. [29] developed a dual-stream pyramid network that
exploits multi-level contextual information and dual-stream feature represen-
tations from pairs of medical images. Kim et al. [13] applied two FCNs to
generate forward and reverse deformation fields. Mok et al. [30] proposed an
FCN designed to learn symmetric deformation fields, enhancing the invertibil-
ity of the transformation process. Additionally, cascaded FCN-based methods
[31, 32] employ a series of stacked FCNs to perform coarse-to-fine registration.

For deformable retinal image registration, Zhang et al. [33] introduced a
framework that combines joint vessel segmentation and deformable registration
based on the U-Net architecture. Tian et al. [34] proposed a multi-scale U-
Net specifically for deformable retinal image registration, using multi-scale
fixed and moving images as inputs. Sui et al. [35] developed a multi-spectral
image registration network, which employs a pyramid strategy to feed both
the original image and ground truth vessel maps into each layer of the encoder.
Benvenuto et al. [36] proposed a U-Net-based vessel registration network that
uses segmented blood vessel maps as input. While these FCN-based methods
excel at learning local features, they often struggle with capturing multi-scale
spatial features and long-range global dependencies.
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2.2 Transformer-based Deformable Registration Methods

Recently, Transformer-based methods have shown remarkable success in the
medical image analysis domain, including tasks related to medical image reg-
istration. Chen et al. [16] ioneered the integration of a Transformer block into
the higher layers of a UNet, enhancing feature representation by modeling
long-range dependencies among features. Similarly, Song et al. [23] incorpo-
rated multiple Transformer blocks in the middle stage of the UNet architecture.
Building on these developments, TransMorph [17] replaced the traditional
encoder with Swin Transformer [18], shifting to a pure Transformer-based
encoder for deformable medical image registration. Additionally, Shi et al. [19]
introduced an X-shaped network that uses two cross-attention Transformer
blocks to establish correlations between different feature representations. Zhu
et al. [20] employed the Swin-UNet [37] for deformable medical image reg-
istration and introduced an extra inverse consistency constraint. Although
these Transformer-based methods have proven effective in medical image reg-
istration, they often have low inductive bias and operate with a fixed patch
size.

Moreover, U-Shape Transformer-based methods have achieved significant
advancements in image segmentation tasks. For instance, U-Transformer
[38] facilitates global information exchange between low-level features in the
encoder and high-level features in the decoder through multi-head Trans-
formers at various stages. Similarly, UCTransNet [39] introduces a Channel
Transformer to replace traditional skip connections, effectively capturing
multi-scale global features. Recently, LEFormer [40] employs dual encoder
branches—one based on CNNs and the other on Transformers—and a cross-
encoder fusion module to integrate local and global features. These U-shaped
Transformer-based approaches have demonstrated their versatility and might
also be applicable to medical image registration tasks, an area that previous
research has largely overlooked.

In contrast to the previous methods, our method integrates the merits of
local feature learning of FCNs, global feature modeling of Transformers, and
multi-scale spatial feature fusion and selection in multi-scale spatial attention.

3 Methodology

Deformable image registration is a process that involves two input images,
a moving image M and a fixed image F , both in an n-dimensional space.
This process aims to maximize the similarity between the input image pair,
and the output is a dense deformation field ϕ, where ϕ = Id + u. In this
equation, Id denotes the identity and u denotes a flow field of displacement
vectors. To model this deformation field efficiently in retinal image registration,
we propose a hybrid deformable medical image registration network, named
Reparameterized Multi-scale Transformer (RMFormer), as shown in Fig. 2. A
detailed description of the network architecture, the employed loss function,
and regularization techniques are elaborated in the following sections.
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Fig. 2 The overall framework of the proposed hybrid deformable medical image registra-
tion network, Reparameterized Multi-scale Transformer (RMFormer), which fully leverages
advantages of local features of FCNs, global features of transformers, and multi-scale feature
utilization of multi-scale spatial attention block. First, we extract local features, multi-scale
features, and long-range features by HRT blocks at four encoder stages. Then, we send the
hierarchical multi-level features generated by three HRT blocks into convolutional layers
of three decoder stages with corresponding multi-level skip connections. Finally, the last
decoder generates the predicted deformation field.

3.1 Overall Architecture

The overall architecture of our proposed RMFormer is illustrated in Fig. 2,
which follows the U-shape design philosophy. It consists of an encoder with
four stages, a decoder with three stages, and three multi-level skip connections.
The key novelty of our method comes from a hierarchical hybrid of convo-
lution, reparameterized multi-scale spatial attention, and transformer feature
encoding strategies. In the following section, we will describe RMFormer from
the data pipeline.

Given the input image pair, denoted as M ∈ RH×W×C and F ∈ RH×W×C ,
whereH,W , and C represent the height, width, and the channel number of the
image pair, respectively. Our proposed RMFormer first concatenates the input
image pair along the channel axis and then split them into N non-overlapping
2D patches X = {xi ∈ RP×P×2C , i = 1, 2, ..., N} with a convolutional layer
and a max pooling layer, where P denotes the size of each patch that is typi-
cally set to 4 [14, 18]. The number of patches N is determined by the spatial
resolution of the input image pair, where N = H

P × W
P , with xi representing

the i-th patch. Next, each patch is embedded into an image token E of an arbi-
trary dimension C using a trainable linear projection. We omit the positional
embedding in this paper because it is not significant for image registration [17].
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In each encoder stage, we apply several hybrid re-parameterized trans-
former (HRT) modules and patch merging layers to capture multi-scale spatial
information and long-range features for token selection. The HRT module gen-
erates the same number of tokens as the input, while the patch merging layers
concatenate the features of each group of 2×2 neighboring tokens and expand
the token dimensions between two stages, resulting in the reduction of the
number of tokens by a factor of 2× 2 = 4 (e.g., H ×W ×C → H

2 × W
2 × 4C).

Then, a linear layer is applied to the 4C-dimensional concatenated features to
produce features for each 2C-dimension. This paper employs four HRT mod-
ules and three patch merging layers in the encoder structure, resulting in a
final output dimension of H

32 × W
32 × 8C.

It is followed by the decoder structure, we use pure convolutional layers to
implement it. In each decoder stage, an upsampling layer and two convolution
layers are used. The upsampling layer takes the feature map from the previous
layer and outputs the feature maps upsampled to twice the size with bilinear
interpolation. Then, these upsampled feature maps are concatenated with the
corresponding feature maps from the encoder path via a skip connection. The
concatenated feature maps are then sent into the convolutional block, which is
composed of two consecutive 3×3 convolutions with batch normalizations and
ReLU activation functions. After the last decoder stage, we obtain the feature
maps with resolution H

4 × W
4 . We use a prediction head that first upsamples

the feature maps to resolution H
2 × W

2 , then performs two consecutive 3 × 3
convolutions, and upsamples again to recover the original resolution of the
input image. Finally, we adopt a 3× 3 convolution to predict the deformation
field with N channels, where N is the dimension of the input image.

3.2 Hybrid Re-parameterized Transformer Block

Considering the intrinsic locality of FCN-based methods with convolution
operations, which can not learn long-range dependencies among pixels and
ignore multi-scale spatial features. Additionally, Transformer based methods
can capture global feature dependencies but also lose sight of multi-scale spa-
tial features, which is significant for deformable retinal image registration. To
integrate the merits of these three feature types, we develop a Hybrid Re-
parameterized Transformer block for feature encoding, which consists of a
multi-scale spatial convolution block and a Swin transformer block, as shown
in Fig. 2.

3.2.1 Multi-scale Spatial Convolution Block

The structure of the proposed MSCB is illustrated in Fig. 2(a). Specifically,
our proposed MSCB consists of a Seq2Img operation, a Convolutional Block, a
Reparameterized Multi-scale Spatial Attention Block, and an Img2Seq opera-
tion. The output features of the Convolutional Block and the Reparameterized
Multi-scale Spatial Attention Block, denoted as F conv

i and Fms
i , are obtained
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by passing the reshaped feature maps through them, respectively:

F conv
i = ConvBlocki(Seq2Img(X))

Fms
i = R-MSSA(Seq2Img(X))

(1)

where i denotes the i-th stage. Finally, the two features are added up and
transformed back to tokens by the Img2Seq operation.

MSCB(X) = Img2Seq(F conv
i + Fms

i ) (2)

By integrating multi-scale spatial attention into convolutions, our proposed
MSCB can enhance the features for the image registration task by capturing
contextual dependencies across different scales and regions to better establish
the correct correspondence.

Seq2Img: The Seq2Img operation reshapes the 1D tokens from Trans-
former to 2D feature maps which will be processed by the following con-
volutional block and Reparameterized Multi-scale Spatial Attention block,
respectively.

Convolutional Block: To capture local information, the first jigsaw for
our model is the convolution block. Specifically, given an input feature map
Fi−1, the output of the convolutional stem is shown as follows:

F conv
i = ConvBlocki(Fi−1) (3)

where i represents the i-th stage, F conv
i is the output feature map with the

same resolution as the input. We adopt the same convolution blocks as the
four stages of ResNet [41] architecture. The detailed implementation will be
elaborated in the next section.

Reparameterized Multi-scale Spatial Attention Block: The multi-
scale and spatial relationships are very important for medical image registra-
tion when finding correspondences with different scales and shapes, and thus
we propose multi-scale spatial attention to enable attention mechanism in a
spatial perspective to capture multi-scale dependencies of tokens, which is a
complement to token-wise self-attention in Transformer.

As shown in Fig. 2(b), our proposed reparameterized multi-scale spatial
attention (R-MSSA) is implemented by convolutional layers with different
kernels with a stride of 1. We use three different size of convolution kernels
k(1) ∈ Rk1×k1 , k(2) ∈ Rk2×k2 , k(3) ∈ Rk3×k3 where k1 < k2 < k3. The outputs
of each convolution can be obtained by:

ois = BatchNorm(Fi−1 ∗ k(s)), s ∈ {1, 2, 3} (4)
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Fig. 3 A representative example of re-parameterization in our R-MSSA block. We assume
the origin kernels k(1), k(2), and k(3) are of sizes 1 × 1, 3 × 3, and 5 × 5. After training,
we fuse each kernel and the following batch normalization together and then use the fused
kernel K̄ of shape k̄ = 5× 5 to achieve more efficient inference.

where ois ∈ R
H

2i+1 × W

2i+1 ×1. They are then summed up to get the feature
attention map F̂ms

i , which can be obtained by:

F̂ms
i = σ(

3∑
s=1

ois), i ∈ {1, 2, 3, 4} (5)

where i denotes the i-th stage and σ is the Sigmoid activation function to
get the weights that indicate the importance of each pixel of the feature
map. Finally, the final calibrated multi-scale feature is calculated by the
multiplication of attention map F̂ms

i and input feature Fi−1 using spatial
attention:

Fms
i = F̂ms

i ⊗ Fi−1 (6)

We seek to minimize the inference time of the MSSA block in a way that
the multi-scale convolutions can be fused into a single standard convolution.
We achieve this through structural re-parameterization, a technique previously
explored in [26, 42, 43]. To elaborate, when multiple 2D kernels are applied
to the same input with the same stride and produce outputs of the same
resolution, their outputs can be summed up. By adding these kernels to corre-
sponding positions, we can obtain an equivalent kernel that produces the same
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output. To be specific, we first fuse the j-th batch normalization and linear
scaling transformation into the j-th convolutional kernels k(j) by:

K(j) =
γj
σj

k(j) − µjγj
σj

+ βj (7)

where µj and σj are the values of the mean and standard deviation of
batch normalization, γj and βj are the learned scaling factor and bias term,
respectively. After that, our multi-scale convolutions can be fused to a single
convolution kernel K̄ ∈ Rk3×k3 by:

K̄ = K(1) ⊕K(2) ⊕K(3) (8)

where ⊕ is the element-wise addition of the kernel parameters on the corre-
sponding positions and K(1), K(2), and K(3) are batch normalization fused
multi-scale 2D kernels. The element-wise addition of kernels with different sizes
is shown in Fig. 3. Small-size kernels can be considered to have the same size as
the largest kernel by padding zeros around them. As the strides of the kernels
are the same, if we add the kernels on the corresponding positions, using the
resulting kernel to operate on the original input will produce the same result,
which can be easily verified. So at inference time, the feature attention map
can be calculated simply by:

F̂ms
i = σ(Fi−1 ∗ K̄), i ∈ {1, 2, 3, 4} (9)

Img2Seq: The Img2Seq operation flattens the 2D feature maps from con-
volutions back to 1D tokens which serve as the input of the following Swin
Transformer Block.

3.2.2 Swin Transformer Block

In this work, we adopt Swin Transformer [18] block to capture long-range
dependencies among features. The structure of swin transformer block (STB)
is depicted in Fig. 2(c) and consists of a window-based multi-head self atten-
tion (W-MSA), a shifted window-based multi-head self attention (SW-MSA),
LayerNorm (LN) layers, and Multi-layer Perceptrons (MLPs). Specifically,
the Swin Transformer employs a window partition mechanism to compute
self-attention exclusively within each rectangular window. Additionally, the
windows are shifted by half of the window size along each dimension to
facilitate computing self-attention within the shifted windows. Based on this
approach, our STB can be formulated as:
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ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

(10)

where ẑl and zl denote the output features of the (S)W-MSA and the MLP
module of the lth block, respectively. The self-attention is computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

+B)V (11)

where Q,K, V ∈ RM2×d are query, key, and value matrices, M2 denotes
the number of tokens in a window, d denotes the dimension of query and key,
and B represents the relative position of tokens in each window.

3.3 Loss

In the training process of retinal image registration, the loss function of our
proposed network can be defined as:

L(M,F, ϕ) = Lsim(M ◦ ϕ, F ) + λLsmooth(ϕ) (12)

where M and F are the moving image and the fixed image respectively, and
λ is the regularization parameter. Lsim(·) is used to measure the similarity
between F and M ◦ϕ. In our work, we use the Structure Similarity Index Mea-
sure (SSIM) for retinal image registration. SSIM is designed to mimic human
perception by considering structural information, luminance, and contrast. The
SSIM between two images can be defined as

SSIM(x, y) = L(x, y) ∗ C(x, y) ∗ S(x, y)

=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

(13)

where L, C, and S are luminance, contrast, and structural similarity, respec-
tively, µx, µy, σx, σy, and σxy represent the means, standard deviations, and
cross-covariance of the pixel values in x and y, and c1 and c2 are constants
to stabilize the division in case the denominator becomes zero. As we want to
maximize the similarity, the SSIM loss is defined as

Lssim(x, y) = 1− SSIM(x, y) (14)
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The function of Lsmooth(·) is to make the deformation field realistic, known
as the smooth regularization term. It is defined as:

Lsmooth(ϕ) =
∑
p∈Ω

∇ϕ(p)2 (15)

4 Experiments

4.1 Datasets

FIRE Dataset [44]. The publicly available Fundus Image Registration
(FIRE) dataset is intended for the registration tasks. The dataset consists of
129 retinal images forming 134 image pairs with a resolution of 2912 × 2912
pixels from 39 patients. These image pairs are categorized into three groups
based on their inherent characteristics. For our experimental purposes, we
have exclusively selected category S, 71 image pairs, and category A, 14 image
pairs, to form our experiment dataset. The remaining category, category P,
contains images with small overlaps, which is unsuitable for deformable image
registration. The dataset is divided into 67 and 18 for training and testing sets.

OASIS Dataset [45, 46]. The Open Access Series of Imaging Studies
(OASIS) dataset, sourced from the 2021 Learn2Reg challenge for inter-patient
registration, comprises 451 brain T2 MRI images. Within this dataset, 394
images are designated for training purposes, 19 images for validation, and 38
images for testing. Notably, the dataset includes segmentation labels for 35
cortical and subcortical brain structures, providing additional information for
analysis and evaluation.

4.2 Implementation Details

The proposed RMFormer is implemented using PyTorch [47] and is
trained/tested on an NVIDIA RTX 2080Ti GPU and an NVIDIA A100-
SXM4-40GB GPU. The Adam optimizer is employed during training for both
datasets.

For the FIRE dataset, a learning rate of 0.001 and a batch size of 8 were uti-
lized, with a maximum of 400 training epochs. The regularization parameter λ
was set to 1 for all experiments. The number of ResBlock in each convolutional
block of MSCB was set to {2,2,2,2}, following the ResNet-18 architecture. We
use a window sizes of {8,8}, an embed dimension of 64, Swin Transformer
block numbers {2,2,4,2}, and head numbers {4,4,8,8}.

For OASIS, a learning rate of 0.0001 and a batch size of 1 were employed
during training, with a maximum of 500 training epochs. The regularization
parameter λ was set to 1, and the segmentation weighting parameter γ was also
set to 1. The number of ResBlock in each convolutional block of MSCB was
adjusted to {3,4,6,3} following the ResNet-34 architecture. We use a window
sizes of {5,6,7}, an embed dimension of 128, Swin Transformer block numbers
{2,2,12,2}, and head numbers {4,4,8,16}.
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4.3 Evaluation Metrics

For the FIRE dataset, we use the similarity metric (SSIM) to measure the
deformable retinal registration performance of our RMFormer and comparable
methods due to unavailable blood vessel segmentation labels. To evaluate the
quality of the deformation field generated by methods, we utilize the Jacobian
determinant J at each point (i, j) of the deformation field ϕ, which can be
formulated as follows:

det(Jϕ(i, j)) =

∣∣∣∣∣ ∂i∂x
∂j
∂x

∂i
∂y

∂j
∂y

∣∣∣∣∣ (16)

Specifically, we examine the percentage of negative terms of each point’s Jaco-
bian determinants for the output deformation field ϕ, denoted as |Jϕ| < 0,
representing the deformation field’s folding rate. Lower occurrences of folded
pixels (or voxels) indicate a superior deformation field.

Conversely, we adopt the Dice score to measure the registration perfor-
mance of methods on the publicly available OASIS dataset, where segmenta-
tion labels of anatomical structures are available. For the quality evaluation
of the deformation field, we use the 3D Jacobian determinant of each point
(i, j, k). It can be similarly defined as:

det(Jϕ(i, j, k)) =

∣∣∣∣∣∣
∂i
∂x

∂j
∂x

∂k
∂x

∂i
∂y

∂j
∂y

∂k
∂y

∂i
∂z

∂j
∂z

∂k
∂z

∣∣∣∣∣∣ (17)

4.4 Ablation Studies

4.4.1 Effect of different kernel size selections in R-MSSA
block

The upper part of Table 1 shows the registration performance of RMFormer
by using different kernel sizes in R-MSSA on the FIRE dataset. Here, we select
six kernel sizes: 1× 1, 3× 3, 5× 5, 7× 7, 9× 9, 11× 11. According to Table 1,
we conclude as follows: (1) Our method achieves the highest similarity result
with kernel sizes option 1× 1, 5× 5, and 9× 9 than others kernel sizes with a
competitive percentage of pixels with a negative Jacobian determinant. Hence,
we adopt 1 × 1, 5 × 5, and 9 × 9 as the final kernel size for the following
ablation and comparison experiment. (2) When only a single kernel is used,
both too small (1 × 1) and too big (11 × 11) kernel sizes perform poorly.
(3) When using multiple kernels, we see that the larger the size difference
between the kernels used, the more diverse the features extracted, and the
better the effect of the network. (4) Different kernel sizes are beneficial to
enhancing diversities of feature maps by multi-scale learning, which conduces
to performance improvement.
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TransMorph OursCycleMorph ViT-V-NetVoxelMorph1 VoxelMorph2SyN

F

M

CB(M, F)

Fig. 4 Qualitative results of RMFormer (last column) and other comparison methods on
FIRE dataset. The first column lists the moving image, fixed image, and the original checker-
board image CB(M,F ). After that, each column represents a certain method. The first row
shows the resulting warped moving image M ◦ ϕ. The second row shows the checkerboard
of the fixed and the warped moving image CB(M ◦ ϕ, F ). The third row visualizes the out-
put displacement fields, where spatial dimensions x and y are mapped to the red and green
channels, respectively. The fourth row provides a visualization of the effect of the displace-
ment field on the standard grid image.

4.4.2 Effects of each block in MSCB

The lower part of Table 1 shows the ablation study results of each submodule
within our proposed MSCB. CB denotes the Convolutional Block mentioned
in section 3.2.1; RC denotes adding a residual connection. For w/o MSCB,
the MSCBs of all stages are removed. For w/o R-MSSA and w/o ConvBlock,
we remove all the R-MSSA branches and all the convolutional blocks in the
MSCBs, respectively. For R-MSSA after CB, we place the R-MSSA module
after the convolutional block instead of the original parallel setting. Based on
this, we further explored (R-MSSA+RC) after CB, in which we add a residual
connection next to the R-MSSA block to change the purpose of the R-MSSA
from feature selection to feature enhancement.

Although Atrous Spatial Pyramid Pooling (ASPP) module [48] is similar
to our R-MSSA block, the key motivation between them is different: our R-
MSSA is a spatial attention module, which captures multi-scale features for
emphasizing informative pixel-wise positions; while ASPP belongs to pooling
methods, which employs atrous convolution operators with dilation rates to
expand the receptive field sizes without down-sampling operator for capturing
multi-scale features. This paper summarizes the main difference between R-
MSSA and ASPP as follows:

• Our R-MSSA block first utilizes different convolutional kernel sizes (1x1,
5x5, 9x9) to capture multi-scale feature maps, and then merges them into
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Table 1 The first part shows the influence of the different sizes of kernels in R-MSSA.
The second part shows the comparison of various designs of RMFormer on FIRE dataset.
The bolded numbers denote the highest scores.

Setting SSIM ↑ % of |JΦ| < 0 ↓

only 1x1 0.913 ± 0.038 8.48e-4 ± 3.59e-3
only 3x3 0.917 ± 0.039 1.36e-3 ± 6.36e-3
only 5x5 0.917 ± 0.039 4.24e-5 ± 2.51e-4
only 7x7 0.918 ± 0.039 3.60e-3 ± 2.13e-2
only 9x9 0.917 ± 0.039 4.24e-5 ± 2.51e-4

only 11x11 0.912 ± 0.038 9.62e-3 ± 1.32e-2
1x1, 3x3, 5x5 0.912 ± 0.038 6.95e-3 ± 1.44e-2
1x1, 3x3, 7x7 0.912 ± 0.038 5.21e-3 ± 9.69e-3
1x1, 3x3, 9x9 0.917 ± 0.039 8.05e-4 ± 3.02e-3

1x1, 3x3, 11x11 0.919 ± 0.038 3.14e-3 ± 9.95e-3
1x1, 5x5, 7x7 0.916 ± 0.039 1.53e-3 ± 5.69e-3
1x1, 5x5, 9x9 0.920 ± 0.038 8.48e-5 ± 5.02e-4

1x1, 5x5, 11x11 0.916 ± 0.039 5.09e-4 ± 1.53e-3
1x1, 7x7, 9x9 0.919 ± 0.038 3.60e-3 ± 1.02e-2

1x1, 7x7, 11x11 0.912 ± 0.038 1.03e-2 ± 1.73e-2
1x1, 9x9, 11x11 0.913 ± 0.038 7.21e-3 ± 1.26e-2
3x3, 5x5, 7x7 0.911 ± 0.039 1.86e-3 ± 5.19e-3

w/o MSCB 0.911 ± 0.040 4.24e-4 ± 1.78e-3
w/o R-MSSA 0.916 ± 0.038 1.19e-3 ± 3.30e-3
w/o ConvBlock 0.917 ± 0.038 4.24e-4 ± 1.89e-3

R-MSSA after CB 0.915 ± 0.039 7.63e-4 ± 3.81e-3
(R-MSSA+RC) after CB 0.917 ± 0.039 7.21e-4 ± 4.01e-3
ASPP replaces R-MSSA 0.917 ± 0.039 2.33e-3 ± 1.03e-2

RMFormer 0.920 ± 0.038 8.48e-5 ± 5.02e-4

a singular convolutional kernel size at the inference time with the re-
parameterization technique. Conversely, the ASPP module applies atrous
convolution operators with different dilation rates (6, 12, 18, 24) to expand
the receptive fields without downsampling.

• The R-MSSA block is fundamentally based on the spatial attention mech-
anism, where the spatial attention map is derived from the output feature
maps of convolutions with different kernel sizes. On the other hand, our goal
is to fully exploit the multi-scale features to highlight significant pixel-wise
positions and suppress redundant ones effectively. In contrast, ASPP, based
on atrous convolution operators, aims to replace downsampling operators to
capture multi-scale feature information. It may lead to adjacent pixels being
derived from independent subsets and local information loss, which is not
optimal for pixel-level tasks like deformable registration.

Moreover, we use ASPP block to substitute our R-MSSA block to compare
their performance, further proving their differences.

From the results in Table 1, we see that: (1) R-MSSA outperforms ASPP,
indicating that the objectives of them in capturing multi-scale features, keeping
with previous discussions. (2) Both the R-MSSA and ConvBlock branches
in the MCCB have unique roles in capturing local features and multi-scale
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Table 2 Quantitative evaluation results for the FIRE dataset. SSIM and the percentage
of pixels with a negative Jacobian determinant (i.e., folded pixels) are evaluated for
different methods. The bolded numbers denote the highest scores.

Methods SSIM ↑ % of |JΦ| < 0 ↓

w/o registration 0.851 ± 0.041 -
SyN[49] 0.886 ± 0.052 3.81e-2 ± 9.57e-2
VoxelMorph-1[11] 0.904 ± 0.041 1.27e-4 ± 5.54e-4
VoxelMorph-2[11] 0.909 ± 0.039 1.53e-3 ± 4.65e-3
CycleMorph[13] 0.906 ± 0.037 7.63e-2 ± 1.09e-1
ViT-V-Net[16] 0.910 ± 0.039 4.20e-3 ± 9.39e-3
TransMorph[17] 0.911 ± 0.040 5.51e-4 ± 2.04e-3

Swin-UNet[37] 0.900 ± 0.045 6.36e-4 ± 2.84e-3
UCTransNet[39] 0.912 ± 0.041 0 ± 0
META-UNet[50] 0.912 ± 0.041 0 ± 0

RMFormer 0.920 ± 0.038 8.48e-5 ± 5.02e-4

features, respectively, bringing meaningful performance improvement. MSCB
takes advantage of them, further boosting performance.

4.5 Comparisons with Superior Methods

4.5.1 Result on retinal image dataset

We conducted a comparative analysis of our method against several previous
approaches: Symmetric Normalization (SyN) [49], FCN-based unsupervised
methods VoxelMorph [11], CycleMorph [13], and Transformer-based methods
Vit-V-Net [16], TransMorph [17]. The SyN algorithm was implemented and
tuned using the ANTs [51] package. In this comparison, VoxelMorph-1 refers to
the original architecture, whereas VoxelMorph-2 denotes an enhanced variant
with twice the number of convolutional filters. Additionally, we compare our
method with the latest U-shape Transformer-based methods: Swin-UNet [37],
UCTransNet [39], and META-UNet [50]. For all these methods, we use the
official online implementation and maintenance code and follow the optimal
parameter settings. We train them from scratch to get the best performance.
For RMFormer, the kernels in R-MSSA are set to the size of {1, 5, 9}, as this
configuration was found to deliver the best results.

Table 2 shows the average SSIM and percentage of pixels with negative
Jacobian determinants over all subjects and structures for different methods on
the FIRE dataset. RMFormer achieves the overall best performance regarding
average SSIM while producing smooth registration fields (less non-positive
Jacobian voxels) through comparisons to superior methods. Compared with
the current SOTA registration methods and SOTA U-shape transformer-based
methods, RMFormer can achieve the best results, which shows the novelty
of our proposed Hybrid Reparameterized Transformer module, which fully
integrates local, global, and multi-scale features.



Springer Nature 2021 LATEX template

18 RMFormer for Deformable Retinal Image Registration

4.5.2 Result on 3D MRI dataset

For MRI registration, we follow the previous works [17] and use the local
normalized cross-correlation (LNCC) as the similarity metric. The LNCC loss
is defined as

Llncc(x, y) =

∑
p∈Ω

(∑
pi
(x(pi)− x̄(p))(y(pi)− ȳ(p))

)2

(∑
pi
(x(pi)− x̄(p))2

)(∑
pi
((y(pi)− ȳ(p))2)

) (18)

where Ω denotes the cuboid on which input images are defined, x̄ and ȳ denotes
the local mean in the window of size n3 around voxel p. pi iterates over the
volume, with n = 9 in our work.

In the context where the segmentation of the input image pair SM and SF

is provided, we can exploit this supplementary information during the training
process to enhance the anatomical correspondence between M ◦ ϕ and F . To
achieve this, we incorporate a loss function denoted as Lseg, which evaluates
the degree of overlap between the segmentations. This loss function is included
as a component of the overall loss function:

L(M,F, ϕ) = Lsim(M ◦ ϕ, F ) + λLsmooth(ϕ)

+ γLseg(SM ◦ ϕ, SF )
(19)

where SM and SF represent, respectively, the organ segmentation of M and F .
Additionally, the hyperparameter γ is utilized to control the weighting of the
segmentation. In the domain of image registration, the Dice score is frequently
employed as a metric to evaluate the quality of registration. Consequently, we
directly minimize the Dice loss between the segmentations Sk

M and Sk
F , where

the subscript k represents the kth structure/organ:

LDice(Sx, Sy) =

1− 1

K

∑
k

2
∑

p∈Ω Sk
x(p)S

k
y (p)∑

p∈Ω (Sk
x(p))

2
+
∑

p∈Ω

(
Sk
y (p)

)2 (20)

Table 3 shows the average Dice score, the 95% Hausdorff distance, and the
standard deviation of the logarithm of the Jacobian determinant of the vali-
dation set of the challenge. The scores of various methods are obtained from
the leaderboard of the challenge. RMFormer achieved the overall best perfor-
mance regarding both Dice and HD95, which demonstrates the effectiveness
of our method in the 3D dataset.
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Table 3 Quantitative evaluation results for the OASIS dataset from the 2021 Learn2Reg
challenge task 3. The results came from the challenge’s leaderboard. The bolded numbers
denote the highest scores.

Methods DSC ↑ HD95 ↓ SDlogJ ↓

Lv et al. [52] 0.827 ± 0.013 1.722 ± 0.318 0.121 ± 0.015
nnU-Net [53] 0.846 ± 0.016 1.500 ± 0.304 0.067 ± 0.005
LapIRN [54] 0.861 ± 0.015 1.514 ± 0.337 0.072 ± 0.007
VoxelMorph-huge 0.847 ± 0.014 1.546 ± 0.306 0.133 ± 0.021
TransMorph [17] 0.858 ± 0.014 1.494 ± 0.288 0.118 ± 0.019
TransMorph-Large [17] 0.862 ± 0.014 1.431 ± 0.282 0.128 ± 0.021
Fourier-Net-Large [55] 0.860 ± 0.013 1.374 ± 0.279 0.478 ± 0.113
RMFormer 0.872 ± 0.016 1.338 ± 0.280 0.177 ± 0.040
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Fig. 5 Representative intermediate feature maps from the MSCB in the second stage. The
first row shows the input feature maps of MSCB. The second and the third rows show the
output of the R-MSSA branch and the convolutional block branch, respectively. The fourth
row shows the final output feature map of MSCB.

4.6 Visual Analysis and Explanation

4.6.1 Qualitative analysis of deformation field

Fig. 4 shows the qualitative deformable retinal image registration results
of SyN, VoxelMorph, CycleMorph, ViT-V-Net, TransMorph, and RMFormer
based on the FIRE dataset. The first column shows the original image pair
M and F , and the checkerboard (CB) image between them. The following
columns are the visual results of our proposed RMFormer and the comparable
methods. The first row shows the warped images using the predicted deforma-
tion field. The second row illustrates the checkerboards between the warped
and fixed images. The third row visualizes the predicted displacement field,
where the spatial dimensions x and y in the displacement field are mapped to
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the red and green channels. The fourth row shows the effect of performing the
predicted displacement field on a standard grid image.

From the first row, we can see that for SyN, VoxelMorph, and CycleMorph,
the blood vessels in the upper part of the warped images have large unreason-
able deformations. These methods pay much attention to local vessel shape
alignment but ignore the significance of global vessel shape alignment. ViT-
V-Net and TransMorph can produce reasonable deformation; however, from
the second row, we can easily see that they failed to align the blood vessels.
Different from these methods, RMFormer can provide reasonable deformation
while achieving the best alignment effects of local and global vessel shapes. We
also find that RMFormer can produce the smoothest deformation field from
the third and fourth rows. Overall, our proposed RMFormer not only focuses
on global shape features but also guarantees the quality of local information.

4.6.2 Intermediate feature representation visualization of
MSCB

To investigate how the R-MSSA block and the MSCB blocks affect the
deformable retinal image registration process, we visualize the internal feature
maps produced by the proposed MSCB. Fig. 5 provides the representative
internal feature maps of each subblock from the MSCB in the second stage.
We can summarize as follows: (1) The R-MSSA branch pays more atten-
tion to specific regions than the convolutional block branch, agreeing with
our expectations; (2) The convolutional block branch pays more attention to
extracting local features with diversity; (3) The final output merges the mer-
its of the multi-scale features in highlighting informative regions, and local
features in improving the diversities of feature representations with different
kernels through convolution operations.

4.6.3 Intermediate feature representation visualization of
FCN-based method, Transformer-based method, and
hybrid method

To investigate difference of the inductive bias in FCN-based method and
Transformer-based method, we visualize the intermediate feature maps in
the second layer of VoxelMorph (FCN-based) and Swin-UNet (Transformer-
based), together with our proposed RMFormer (hybrid), as shown in Fig. 6.
VoxelMorph, with its strong inductive bias, extracts feature that focus on spe-
cific sparse areas. In contrast, Swin-UNet, which has a lower inductive bias but
facilitates global information interaction, generates feature maps where the
activation values of adjacent positions are similar. Our RMFormer, by integrat-
ing both structures and leveraging spatial attention, produces feature maps
that complement each other, capturing both specific structures and global
context.
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VoxelMorph Swin-UNet RMFormer

Fig. 6 Representative intermediate feature maps from VoxelMorph, Swin-UNet, and
RMFormer.

5 Discussion and Limitations

This paper argues that the complementary roles of FCN-based and
Transformer-based methods have not been fully explored for medical image
registration tasks. In seeking solutions to this problem, we find that current
FCN-based and Transformer-based methods often ignore the multi-scale fea-
ture capturing. Consequently, we propose a hybrid deformable medical image
registration network to incorporate the merits of FCNs and Transformers as
well as add a novel multi-scale spatial attention for multi-scale spatial feature
fusion and enhancement. The results show that our proposed method performs
better than recent methods on 2D/3D deformable medical image registration
tasks. Moreover, this paper provides a visual explanation of intermediate fea-
ture maps from the feature representation learning perspective. There are still
some limitations in our proposed method, as follows:

• We utilize an R-MSSA block to capture multi-scale spatial features for
highlighting significant pixel-wise positions in RMFormer. However, the
multi-scale spatial feature fusion and pixel position selection mechanisms
need to be further improved, which may be beneficial to both improving the
explanation and performance of deformable medical image registration.

• This paper only provides the deformable registration for retinal images, and
an extended version of affine registration can be further explored.

• We only test the effectiveness of RMFormer on limited retinal image data
due to the scarcity of retinal image images.

To address the above limitations, we will design improved multi-scale fea-
ture extraction methods and expand our method to provide affine registration
on a larger retinal image registration dataset.

6 Conclusion

This paper proposes a Reparameterized Multi-scale Transformer (RMFormer)
for deformable retinal image registration by integrating the advantages of
local features of FCNs, global features of Transformers, and multi-scale spatial
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attention features. Moreover, we apply a re-parameterizing technique to reduce
the parameters and computational cost of our proposed R-MSSA block at the
inference time. The extensive experiments on both the 2D retinal image regis-
tration task and 3D MRI image registration task demonstrate the effectiveness
and generalization ability of our method through comparisons to state-of-
the-art methods in a limited medical image regime. Furthermore, we provide
the internal feature representation visualization to explain how our proposed
MSCB work affects the deformable registration process. In the future, we plan
to improve multi-scale feature extraction and selection strategies and provide
affine registration for retinal images.
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